8th Grade Chapter 6 Review

Answer Section

1. ANS:
$12^{2}+16^{2}=c^{2}$
$c=\sqrt{400}=20$
PTS: 1 REF: 6.1 NAT: 8.NS.2|8.EE.2|8.G.6|8.G. 7
TOP: Pre Test
KEY: right triangle | right angle | leg | hypotenuse | diagonal of a square | Pythagorean Theorem | theorem | postulate | proof
2. ANS:
$6^{2}+x^{2}=15^{2}$
$x=\sqrt{189}=3 \sqrt{21} \approx 13.75$

PTS: 1 REF: 6.1 NAT: 8.NS.2|8.EE.2|8.G.6|8.G.7
TOP: Pre Test
KEY: right triangle | right angle | leg | hypotenuse | diagonal of a square | Pythagorean Theorem | theorem | postulate | proof
3. ANS:

$$
\begin{aligned}
5^{2}+x^{2} & =12^{2} \\
x^{2} & =119 \\
x & =\sqrt{119} \approx 10.9
\end{aligned}
$$

The ladder reaches 10.9 feet up the side of the building.
PTS: 1 REF: 6.1 NAT: 8.NS.2|8.EE.2|8.G.6|8.G. 7
TOP: Pre Test
KEY: right triangle | right angle | leg | hypotenuse | diagonal of a square | Pythagorean Theorem | theorem | postulate | proof
4. ANS:

No. This is not a right triangle.
$8^{2}+12^{2}=64+144=208$
$15^{2}=225$
$208 \neq 225$
The sum of the squares of the lengths of the two shorter sides is not equal to the square of the length of the longest side, so this is not a right triangle.

PTS: 1 REF: 6.2 NAT: 8.EE.2|8.G.6|8.G.7|8.G.8
TOP: Pre Test KEY: converse | Converse of the Pythagorean Theorem | Pythagorean triple
5. ANS:

PTS: 1
REF: 6.4

$$
\begin{aligned}
a^{2}+b^{2} & =c^{2} \\
8^{2}+7^{2} & =c^{2} \\
64+49 & =c^{2} \\
c^{2} & =113 \\
c & =\sqrt{113} \\
c & \approx 10.6
\end{aligned}
$$

The distance between $(-3,1)$ and $(5,-6)$ is approximately 10.6 units.

TOP: Pre Test
6. ANS:

$$
\begin{aligned}
a^{2}+b^{2} & =c^{2} \\
18^{2}+10^{2} & =c^{2} \\
324+100 & =c^{2} \\
c^{2} & =424 \\
c & =\sqrt{424} \\
c & \approx 20.6
\end{aligned}
$$

The length of diagonal $A C$ is approximately 20.6 centimeters.
PTS: 1 REF: 6.5 NAT: 8.EE.2|8.G.7|8.G.8
TOP: Pre Test
7. ANS:

The length of the hypotenuse is 26 .
The hypotenuse is always the longest side of a right triangle.
PTS: 1
REF: 6.1
NAT: 8.NS.2 | 8.EE.2|8.G.6|8.G.7
TOP: Mid Ch Test
KEY: right triangle | right angle | leg | hypotenuse | diagonal of a square | Pythagorean Theorem | theorem | postulate | proof
8. ANS:

$$
\begin{aligned}
5^{2}+8^{2} & =17^{2} \\
25+64 & =289 \\
89 & =289
\end{aligned}
$$

No. This is not a right triangle because 89 is not equal to 289 .

PTS: 1
REF: 6.2
NAT: 8.EE. $2 \mid$ 8.G.6|8.G.7|8.G.8
TOP: Mid Ch Test KEY: converse | Converse of the Pythagorean Theorem | Pythagorean triple
9. ANS:
$20^{2}+30^{2}=x^{2}$
$x=\sqrt{1300} \approx 36.1$
Mr. Jeffries needs 36.1 meters of line.
PTS: 1 REF: 6.1 NAT: 8.NS.2|8.EE.2|8.G.6|8.G.7
TOP: Mid Ch Test
KEY: right triangle \| right angle \| leg | hypotenuse \| diagonal of a square | Pythagorean Theorem | theorem | postulate | proof
10. ANS:
$6^{2}+8^{2}=x^{2}$
$x=\sqrt{100}=10$
Tim and Holly hiked 10 kilometers after lunch.
PTS: 1 REF: 6.1 NAT: 8.NS.2|8.EE.2|8.G.6|8.G. 7
TOP: Mid Ch Test
KEY: right triangle \mid right angle \mid leg \mid hypotenuse \mid diagonal of a square \mid Pythagorean Theorem \mid theorem \mid postulate | proof
11. ANS:

$$
\begin{aligned}
6^{2}+x^{2} & =18^{2} \\
x^{2} & =288 \\
x & =\sqrt{288} \approx 17.0
\end{aligned}
$$

The board reaches about 17.0 feet up the side of the wall.
PTS: 1
REF: 6.1
NAT: 8.NS. 2 | 8.EE. $2|8 . G .6| 8 . G .7$
TOP: Mid Ch Test
KEY: right triangle \mid right angle \mid leg \mid hypotenuse \mid diagonal of a square \mid Pythagorean Theorem \mid theorem \mid postulate | proof
12. ANS:

$$
\begin{aligned}
a^{2}+b^{2} & =c^{2} \\
8^{2}+8^{2} & =c^{2} \\
64+64 & =c^{2} \\
c^{2} & =128 \\
c & =\sqrt{128} \\
c & \approx 11.3
\end{aligned}
$$

The distance between $(-4,2)$ and $(4,-6)$ is approximately 11.3 units.
PTS: 1
REF: 6.4
NAT: 8.EE.2|8.G.7|8.G.8
TOP: End Ch Test
13. ANS:
a.

b. $\quad a^{2}+b^{2}=c^{2}$

$$
\begin{aligned}
3^{2}+4^{2} & =c^{2} \\
9+16 & =c^{2} \\
c^{2} & =25 \\
c & =\sqrt{25} \\
c & =5
\end{aligned}
$$

The length of diagonal $A C$ is 5 units.
c. $\quad a^{2}+b^{2}=c^{2}$

$$
\begin{aligned}
7^{2}+3^{2} & =c^{2} \\
49+9 & =c^{2} \\
c^{2} & =58 \\
c & =\sqrt{58} \\
c & \approx 7.6
\end{aligned}
$$

The length of diagonal $B D$ is approximately 7.6 units.
PTS: 1 REF: 6.5 NAT: 8.EE.2|8.G.7|8.G.8
TOP: End Ch Test
14. ANS:
a. $\quad d^{2}=4^{2}+12^{2}$

$$
=16+144
$$

$$
d=\sqrt{160} \approx 12.65
$$

The length of the second leg is approximately 12.65 inches.
b. $\quad d^{2}=12.65^{2}+6^{2}$

$$
=160.0225+36
$$

$$
d=\sqrt{196.0225} \approx 14.0
$$

The length of the three-dimensional diagonal is 14 inches.
c. $\quad d=\sqrt{12^{2}+4^{2}+6^{2}}$

$$
d=\sqrt{144+16+36}
$$

$$
d=\sqrt{196}
$$

$$
d=14
$$

PTS: 1
REF: 6.6
NAT: 8.EE.2|8.G.7|8.G.8
TOP: End Ch Test
15. ANS: $\$ 280$
16. ANS: 15.6 ft .
17. ANS: 10 units
18. ANS: $77.33 \mathrm{~cm}^{2}$
19. ANS: 20 ft .

