Chapter 7 Practice Test

1. The graph of which inequality would be represented with a dashed line?
a. $y \geq 15-5 x$
b. $y \geq 11+4 x$
c. $y \leq 16-2 x$
d. $y<12+3 x$

Graph the system of linear inequalities.

2. $y \geq-2$
$x<2$

3. $y \leq 2 x+3$
$y>-x+5$

4. $\left\{\begin{array}{c}x+y<7 \\ 3 x+y \geq 6\end{array}\right.$

5. Which is a solution to the inequality $y>2+9 x$?
a. $(7,67)$
b. $(8,74)$
c. $(5,42)$
d. $(4,37)$
6. Graph the solution to this system of linear inequalities. Identify 2 solutions to the system of inequalities.
$\left\{\begin{array}{l}y<-2 x \\ y \leq 4 x \\ y \geq-x-5\end{array}\right.$

7. Which system of inequalities is represented by the graph?

a. $y<-x+5$ and $y \geq \frac{1}{2} x+2$
b. $y>-x+5$ and $y \leq \frac{1}{2} x+2$
c. $y \leq-x+5$ and $y>\frac{1}{2} x+2$
d. $y \geq-x+5$ and $y<\frac{1}{2} x+2$
8. Tell whether the graph of each inequality would be represented with a dashed line or solid line.
a. $\quad y<14-7 x$
b. $y+9 \geq 3$
9. Write an inequality that is represented by the graph.

10. Wanda sews small and large gloves. It takes her 45 minutes to sew a small pair of gloves and 120 minutes to sew a large pair of gloves. The costs of producing the gloves are $\$ 2$ for a small pair and $\$ 4$ for a large pair. Wanda has 16 hours available to sew gloves. The materials to make the gloves must cost at most $\$ 40$. The system of linear inequalities represents this situation.
$\left\{\begin{array}{l}45 x+120 y \leq 960 \\ 2 x+4 y \leq 40\end{array}\right.$
Explain what the solution $(16,2)$ represents for this situation. Be specific!
11. Write a system of linear inequalities that is represented by the graph.

12. Which is a solution to the system of linear inequalities?
$\left\{\begin{array}{l}y>2 x+5 \\ y<-3 x+5\end{array}\right.$
a. $(0,5)$
b. $(2,3)$
c. $(1,8)$
d. $(-3,0)$

Define the variables and write a linear inequality in two variables to represent each problem situation.

13. The Foxes are playing the Titans. The Titans have been scoring 28 or more points per game this season. Between 7-point touchdowns and 3-point field goals, the Foxes need to score more than 28 points to have a hope of winning the game.
$\mathrm{X}=$ \qquad
$Y=$ \qquad
Linear inequality \qquad

Define the variables and write a system of linear inequalities that represents each problem situation.
14. The maximum capacity for an average passenger elevator is 15 people and 3000 pounds. It is estimated that adults weigh approximately 200 pounds and children under 16 weigh approximately 100 pounds.
$\mathrm{x}=$ \qquad
$y=$ \qquad
Inequality \qquad
Inequality \qquad

Practice Test for Review Test 6

18. Determine the y-intercept for each of the following functions? (hint: to find y-intercept let $x=0$ and calculate.)
A. $f(x)=3^{x}-5$
B. $f(x)=3^{x}+5$
C. $3 x-2 y=21$
D. $2 x+10 y=50$
19. Is the function increasing or decreasing or constant?(put the equation in the graphing calculator and look at it)
A. $f(x)=3$
B. $f(x)=-3 \cdot 3^{x}$
C. $f(x)=-3^{x}$
20. Draw a system of equations that is:
A. Consistent/Dependent (Infinite Solutions)

B. Inconsistent (No Solution)

21. How many solutions does this system of equations have?
22. Solve the following equations. Show all work.
A. $3 x+10=21$
B. $\frac{1}{3}(3 x-12)=\frac{1}{4}(-28 x-100)$
23. Sketch a graph of each type of function.

Linear

Absolute Value

Quadratic

Exponential.

24. $\sqrt[4]{4096}=$ \qquad 25. $\sqrt[6]{15625}=$ \qquad
26. Use the given functions and evaluate or simplify each problem.
$f(n)=n-3$
Find $f(9)$ \qquad Find $f(3)+g(3)$
Find $f(2)-g(6)$ \qquad
$g(n)=10-2 n$
Find $(g+f)(n)$ \qquad Find $g(f(n))$ \qquad
27. A backyard pool contains 500 gallons of water. It is filled with additional water at a rate of 6 gallons per minute. The function $f(t)=6 t+500$ represents the volume of water in the pool as it is filled.

Input \qquad Output \qquad Y-intercept \qquad Rate of Change or Slope \qquad
28. Evaluate the function $f(x)=-5 x+60$ at each of these values.
a. $f(20)$
b. $f(2.8)$ \qquad d. $f(-3.75)$ \qquad
29. Determine the independent value which results in the given function value. (Hint: replace the $f(t)$ in the first equation with the number it is equal to from the second equation and solve.)
a. $f(t)=-27 t+1170$ when $f(t)=360$ \qquad b. $f(t)=50 t$ when $f(t)=4$ \qquad

Solve the system of equations using any method. (Substitution, Elimination, Graphing)
30.

$$
\begin{gathered}
x-4 y=-24 \\
x=-y+1
\end{gathered}
$$

31.

$$
\begin{gathered}
3 x-4 y=-8 \\
x+4 y=-8
\end{gathered}
$$

32.

$2 x+y=4$
$4 x+3 y=9$

Chapter 7 Practice Test

Answer Section

1. D
2. Answer:

		4	1			
	-3					
			I			
	-1					
--3	-1		1	3	3	\vec{x}
	-1		1			
	-3		+			
		\dagger	\dagger			

3. Answer:

4. Answer:

5. A
6.

7. C
8. a. dashed line
b. solid line
9. $\left\{\begin{array}{l}x+y \geq 400 \\ x \geq 20 \\ y \leq 500\end{array}\right.$
10. $y \leq \frac{2}{3} x-3$
11. The solution $(16,2)$ is the point where the system of equations intersects. Wanda can make 16 pairs of small gloves and 2 pairs of large gloves and remain at a cost of $\$ 40$ in 16 hours.
12.
$\left\{\begin{array}{l}y \leq x+3 \\ y>x-4 \\ y>-x-2 \\ x \leq 2\end{array}\right.$
13. D
14. $7 x+3 y>28$
15. $x=$ the number of adults
$y=$ the number of children
$\left\{\begin{array}{l}x+y \leq 15 \\ 200 x+100 y \leq 3000\end{array}\right.$
16. $x=$ the number of 20 -pound bags
$y=$ the number of 80 -pound bags
$\left\{\begin{array}{l}x+y \geq 10 \\ 20 x+80 y \leq 1000\end{array}\right.$
17. No. The ordered pair $(6,3)$ is not a solution to the inequality. It is not in the shaded half-plane.

Number of Ferris Wheel Rides

