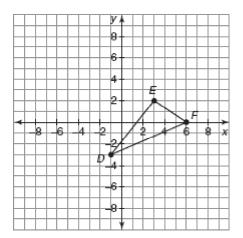

CONGRUENCE THROUGH TRANSFORMATIONS

- 1. Triangle *ABC* has vertices A(-4, -2), B(-1, 3), and C(5, 0).
 - **a.** Translate \triangle ABC down 3 units to form $\triangle A'B'C'$. Graph $\triangle A'B'C'$ on the same coordinate plane as \triangle ABC.

b. What are the coordinates of the vertices of $\triangle A'B'C'$?


The coordinates of A' are $(_ , _)$.

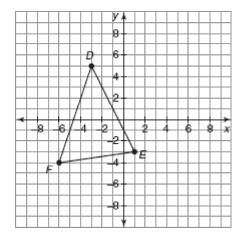
The coordinates of B' are (_____, ____).

The coordinates of C' are (_____, ____).

- **c.** How could you determine the coordinates of the vertices of the image without using a graph?
- 2. Consider the congruence statement $\triangle RUG \cong \triangle CAR$.
 - **a.** Identify the congruent sides.
 - **b.** Identify the congruent angles.

- **3.** Triangle *DEF* has vertices *D*(−1, −3), *E*(3, 2), and *F*(6, 0).
 - **a.** Translate $\triangle DEF$ 4 units to the left to form $\triangle D'E'F'$. Graph $\triangle D'E'F'$ on the same coordinate plane as $\triangle DEF$.

b. What are the coordinates of the vertices of $\triangle D'E'F'$?


The coordinates of D' are $(_ , _)$.

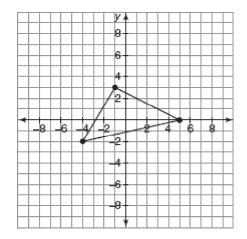
The coordinates of E' are (____, ___).

The coordinates of F' are $(__,_]$.

- **c.** How could you determine the coordinates of the vertices of the image without using a graph?
- 4. Consider the congruence statement $\triangle SUN \cong \triangle FOG$.
 - **a.** Identify the congruent sides.
 - **b.** Identify the congruent angles.

- 5. Triangle *DEF* has vertices D(-3, 5), E(1, -3), and F(-6, -4).
 - **a.** Translate $\triangle DEF$ 2 units to the right and 3 units up to form $\triangle D'E'F'$. Graph $\triangle D'E'F'$ on the same coordinate plane as $\triangle DEF$.

b. What are the coordinates of the vertices of $\triangle D'E'F'$?


The coordinates of D' are $(__,_]$.

The coordinates of E' are (_____, ____).

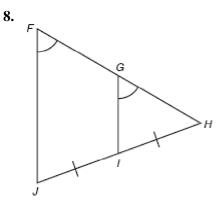
The coordinates of F' are $(__,_]$).

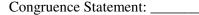
- **c.** How could you determine the coordinates of the vertices of the image without using a graph?
- 6. Consider the congruence statement $\triangle RAT \cong \triangle HOG$.
 - **a.** Identify the congruent sides.

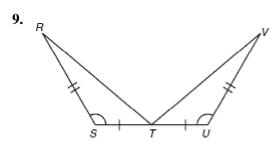
- **7.** Triangle *ABC* has vertices *A*(−4, −2), *B*(−1, 3), and *C*(5, 0).
 - **a.** Rotate $\triangle ABC$ 180° counterclockwise about the origin to form $\triangle A'B'C'$. Graph $\triangle A'B'C'$ on the same coordinate plane as $\triangle ABC$.

b. What are the coordinates of the vertices of $\triangle A'B'C'$?

The coordinates of A' are (_____, ____).

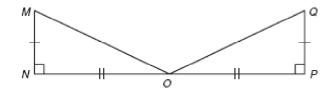

The coordinates of B' are $(__,_]$.


The coordinates of C' are $(_,_)$.


c. How could you determine the coordinates of the vertices of the image without using a graph?

b. Identify the congruent angles.

Write the congruence statements represented by the markers in each diagram.



Congruence Statement: ____

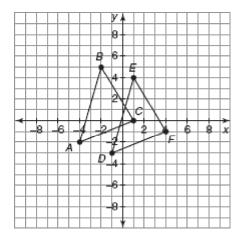
10. For the figure shown, which is a correct congruence statement?

- **a.** $\triangle MNO \cong \triangle PQO$
- **b.** $\triangle NOM \cong \triangle PQO$
- **c.** $\triangle MNO \cong \triangle QPO$
- **d.** $\triangle MON \cong \triangle POQ$

- 11. If $\triangle DEF \cong \triangle LKJ$, which congruence statement is *not* necessarily correct?
 - **a.** $\angle E \cong \angle K$

b.
$$\overline{DE} \cong \overline{JK}$$

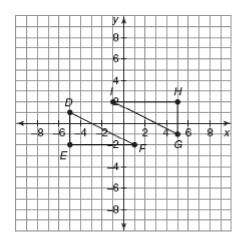
$$c. \quad \angle F \cong \angle J$$


$$\mathbf{d.} \quad DF \cong LJ$$

- 12. Dianne drew a triangle with vertices (1, 3), (3, 2), and (4, 2). She also drew an image of this triangle whose vertices had coordinates (-1, 3), (-3, 2) and (-4, 2). How did she make the image?
 - **a.** She translated the original triangle 2 units down.
 - **b.** She translated the original triangle 6 units down.
 - **c.** She reflected the original triangle over the *x*-axis.
 - **d.** She reflected the original triangle over the *y*-axis.
- **13.** If $\triangle CAT \cong \triangle DOG$, which statement must be true?

a.
$$m \angle A = m \angle O$$

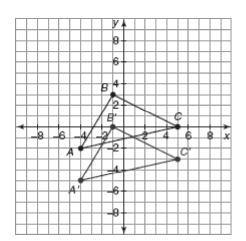
- **b.** $\angle C \cong \angle G$
- c. CA = OG
- **d.** $\overline{CT} \cong \overline{DO}$


14. Which transformation was used to create $\triangle DEF$ from $\triangle ABC$?

- **a.** $\triangle ABC$ was reflected over the y-axis.
- **b.** $\triangle ABC$ was translated to the right 3 units and down 1 unit.
- **c.** $\triangle ABC$ was rotated 90 clockwise about the origin.
- **d.** $\triangle ABC$ was translated to the right 1 unit and down 3 units.
- **15.** Regina drew a triangle with vertices (1, 2), (3, 3), and (4, 1). She translated the triangle 2 units down to create an image. What are the vertices of the image?
 - **a.** (1, 0), (3, 1), and (4, -1)
 - **b.** (1, 4), (3, 5), and (4, 3)
 - **c.** (-1, 2), (1, 3), and (2, 1)
 - **d.** (3, 2), (5, 3), and (6, 1)

- 16. Logan drew $\triangle ABC$ on the coordinate plane, and then reflected the triangle over the y-axis to form $\triangle A'B'C'$. Which statement is not true about these two triangles?
 - **a.** $\triangle ABC \cong \triangle A'B'C'$
 - **b.** The two triangles have the same angle measures.
 - **c.** The vertices of $\triangle ABC$ and $\triangle A'B'C'$ have the same coordinates.
 - **d.** The triangles have the same side lengths.
- 17. Samantha drew $\triangle JKL$ with vertices (2, 3), (4, 3), and (5, 2). She reflected this triangle over the *x*-axis to create an image. What are the coordinates of the vertices of the image?
 - **a.** (0, 3), (2, 3), and (3, 2)
 - **b.** (2, 0), (4, 0), and (5, -1)
 - **c.** (-2, 3), (-4, 3), and (-5, 2)
 - **d.** (2, -3), (4, -3), and (5, -2)
- **18.** Henry draws $\triangle FGH$. Then, he translates that triangle to create $\triangle F'G'H'$. The distance from *F* to *F'* is 4 centimeters. What is the length of $\overrightarrow{GG'}$?
 - a. 2 centimeters
 - **b.** 3 centimeters
 - **c.** 4 centimeters
 - d. 6 centimeters

19. Which transformation was used to create $\triangle GHI$ from $\triangle DEF$?

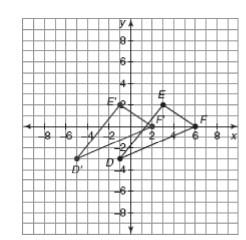


- **a.** $\triangle DEF$ was rotated 90° counterclockwise about the origin.
- **b.** $\triangle DEF$ was rotated 180° counterclockwise about the origin.
- c. $\triangle DEF$ was translated over the *x*-axis.
- **d.** $\triangle DEF$ was translated over the *y*-axis.
- **20.** If the point (-5, 8) is rotated 90° counterclockwise about the origin, what will be the coordinates of the rotated point?
 - **a.** (5, -8)
 - **b.** (-8, 5)
 - **c.** (5, 8)
 - **d.** (−8, −5)

Congruence Through Transformations ANSWER KEY

Answer Section

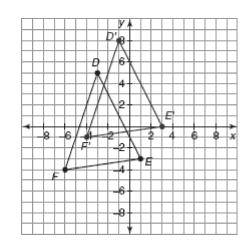
- **1.** ANS:
 - a.



- **b.** The coordinates of A' are (-4, -5). The coordinates of B' are (-1, 0). The coordinates of C' are (5, -3).
- **c.** The coordinates of the vertices of the image could be determined by subtracting 3 from each of the *y*-coordinates of the vertices of the original triangle. The *x*-coordinates stay the same.

- **2.** ANS:
 - a. $\overline{RU} \cong \overline{CA}$ $\overline{UG} \cong \overline{AR}$ $\overline{RG} \cong \overline{CR}$ b. $\angle R \cong \angle C$ $\angle U \cong \angle A$ $\angle G \cong \angle R$
 - REF: 8.2

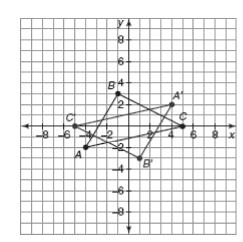
3. ANS:


- **b.** The coordinates of D' are (-5, -3). The coordinates of E' are (-1, 2). The coordinates of F' are (2, 0).
- **c.** The coordinates of the vertices of the image could be determined by subtracting 4 from each of the *x*-coordinates of the vertices of the original triangle. The *y*-coordinates stay the same.

- **4.** ANS:
 - **a.** $\overline{SU} \cong \overline{FO}$ $\overline{UN} \cong \overline{OG}$ $\overline{SN} \cong \overline{FG}$ **b.** $\angle S \cong \angle F$ $\angle U \cong \angle O$ $\angle N \cong \angle G$

5. ANS:

- **b.** The coordinates of D' are (-1, 8). The coordinates of E' are (3, 0). The coordinates of F' are (-4, -1).
- **c.** The coordinates of the vertices of the image could be determined by adding 2 to each of the *x*-coordinates and adding 3 to each of the *y*-coordinates of the original triangle.


REF: 8.1

6. ANS:

a.	$RA \cong HO$
	$\overline{AT} \cong \overline{OG}$
	$\overline{RT} \cong \overline{HG}$
b.	$\angle R \cong \angle H$
	$\angle A \cong \angle O$
	$\angle T \cong \angle G$

7. ANS:

- **b.** The coordinates of A' are (4, 2). The coordinates of B' are (1, -3). The coordinates of C' are (-5, 0).
- **c.** The coordinates of the vertices of the image could be determined by writing the opposite of each of the *x*-coordinates and writing the opposite of each of the *y*-coordinates of the vertices of the original triangle.

REF: 8.1

8. ANS: $\angle HGI \cong \angle HFJ$ and $\overline{HI} \cong \overline{IJ}$

REF: 8.2

9. <u>ANS:</u> $\overline{RS} \cong \overline{VU}, \overline{ST} \cong \overline{UT}, \text{and } \angle S \cong \angle U$

10.	ANS:	С	REF:	8.2
11.	ANS:	В	REF:	8.2
12.	ANS:	D	REF:	8.1
13.	ANS:	А	REF:	8.2
14.	ANS:	В	REF:	8.1
15.	ANS:	А	REF:	8.1
16.	ANS:	С	REF:	8.1
17.	ANS:	D	REF:	8.1
18.	ANS:	С	REF:	8.1
19.	ANS:	В	REF:	8.1
20.	ANS:	D	REF:	8.1