Pythagorean Theorem \&

1.

Write an equation: \qquad
Solve for c .
$\mathrm{c}=$ \qquad
2.

Write an equation: \qquad
Solve for c .
$\mathrm{c}=$ \qquad
3.

Write an equation: \qquad
Solve for x .
$\mathrm{x}=$ \qquad
4.

Write an equation: \qquad
Solve for x .
$\mathrm{x}=$ \qquad

Name: \qquad
9. Jimmy is installing a gravel path along the diagonal of a rectangular garden. The garden measures 24 feet wide by 32 feet long. If the path is 2 feet wide, and gravel costs $\$ 3.50$ a square foot, how much will it cost to install the gravel path?
a. $\quad \$ 80$
b. $\$ 140$
c. $\$ 280$
d. $\$ 392$
10. Brianna is planting a sapling. The garden center recommended she stabilize the sapling with guy wires for the first few months after planting. If Brianna places the guy wires 6 feet up the trunk of the sapling and 5 feet from the base, how much total wire, to the nearest tenth of a foot, will she need for the two guy wires?

a. 6.6 feet
b. 7.8 feet
c. $\quad 12.2$ feet
d. 15.6 feet
11. The library is 10 kilometers south of Aaron's home. The school is 10 kilometers east of Aaron's home. How many kilometers, to the nearest tenth of a kilometer, is the library from the school?
a. $\quad 10.2$ kilometers
b. $\quad 12.0$ kilometers
c. 14.1 kilometers
d. 20.0 kilometers
$a^{2}+b^{2}=c^{2}$
ID: A
12. A painter props a ladder against a house. The base of the ladder is 12 feet from the house. The top of the ladder is 16 feet from the ground. How long is the ladder?
a. $\quad 10$ feet
b. $\quad 14$ feet
c. 20 feet
d. 28 feet
13. Use the converse of the Pythagorean Theorem to determine if the triangle is a right triangle. Explain your answer.

14. Use the converse of the Pythagorean Theorem to determine if the triangle is a right triangle. Explain your answer.

15. What is the length of the unknown leg to the nearest tenth?

a. $\quad 2.4$
b. $\quad 5.1$
c. $\quad 12.5$
d. 18.9

Name: \qquad
16. Determine the distance between $(-3,1)$ and $(5,-6)$ by graphing and connecting the points, creating a right triangle, and applying the Pythagorean Theorem.

17. Determine the distance between $(-5,-2)$ and $(-2$, 5) by graphing and connecting the points, creating a right triangle, and applying the Pythagorean Theorem.

$a^{2}+b^{2}=c^{2}$
ID: A
18. What is the distance between $(2,3)$ and $(-2,7)$? Round to the nearest tenth, if necessary.

a. 4 units
b. 8 units
c. $\quad 5.7$ units
d. 11.4 units
19. What is the distance between $(3,-2)$ and $(-3,-5)$? Round to the nearest tenth, if necessary.

a. 3 units
b. 3.2 units
c. 5.2 units
d. 6.7 units

Name: \qquad

$$
a^{2}+b^{2}=c^{2}
$$

ID: A
20. What is the distance between $(5,7)$ and $(-2,-2)$?

Round to the nearest tenth, if necessary.

a. $\quad 5.7$ units
b. 5.8 units
c. 8.6 units
d. 11.4 units

PYTHAGOREAN THEOREM /CONVERSE ANSWER KEY

1. ANS:
$12^{2}+16^{2}=c^{2}$
$c=\sqrt{400}=20$

REF: 6.1
2. ANS:
$15^{2}+20^{2}=c^{2}$
$c=\sqrt{625}=25$

REF: 6.1
3. ANS:
$6^{2}+x^{2}=15^{2}$
$x=\sqrt{189}=3 \sqrt{21} \approx 13.75$

REF: 6.1
4. ANS:
$6^{2}+x^{2}=19^{2}$
$x=\sqrt{325}=5 \sqrt{13} \approx 18.03$
REF: 6.1
5. ANS:
$5^{2}+x^{2}=12^{2}$

$$
x^{2}=119
$$

$$
x=\sqrt{119} \approx 10.9
$$

The ladder reaches 10.9 feet up the side of the building.
REF: 6.1
6. ANS:

$$
\begin{aligned}
5^{2}+x^{2} & =15^{2} \\
x^{2} & =200 \\
x & =\sqrt{200} \approx 14.1
\end{aligned}
$$

The ladder reaches 14.1 feet up the side of the building.
REF: 6.1
7. ANS: A

REF: 6.1
8. ANS: C

REF: 6.1
9. ANS: C
10. ANS: D

REF: 6.1
11. ANS: C

REF: 6.1
REF: 6.1
REF: 6.1
12. ANS: C

.

13. ANS:

No. This is not a right triangle.
$8^{2}+12^{2}=64+144=208$
$15^{2}=225$
$208 \neq 225$
The sum of the squares of the lengths of the two shorter sides is not equal to the square of the length of the longest side, so this is not a right triangle.

REF: 6.2
14. ANS:

Yes. This is a right triangle.
$9^{2}+12^{2}=81+144=225=15^{2}$
The sum of the squares of the lengths of the two legs is equal to the square of the length of the hypotenuse, so this is a right triangle.

REF: 6.2
15. ANS: C REF: 6.3
16. ANS:

$$
\begin{aligned}
a^{2}+b^{2} & =c^{2} \\
8^{2}+7^{2} & =c^{2} \\
64+49 & =c^{2} \\
c^{2} & =113 \\
c & =\sqrt{113} \\
c & \approx 10.6
\end{aligned}
$$

The distance between $(-3,1)$ and $(5,-6)$ is approximately 10.6 units.

REF: 6.4
17. ANS:

$$
\begin{aligned}
a^{2}+b^{2} & =c^{2} \\
7^{2}+3^{2} & =c^{2} \\
49+9 & =c^{2} \\
c^{2} & =58 \\
c & =\sqrt{58} \\
c & \approx 7.6
\end{aligned}
$$

The distance between $(-5,-2)$ and $(-2,5)$ is approximately 7.6 units.

REF: 6.4
18. ANS: C

REF: 6.4
19. ANS: D

REF: 6.4
20. ANS: D

REF: 6.4

